กิจกรรม 17 มกราคม 2554


ตอบ ข้อที่ 3

การเคลื่อนที่ (อังกฤษ: motion) คือ การเปลี่ยนตำแหน่งของวัตถุในช่วงเวลาหนึ่ง ซึ่งวัดโดยผู้สังเกตที่เป็นส่วนหนึ่งของกรอบอ้างอิง เมื่อปลายคริสต์ศตวรรษที่ 19 เซอร์ไอแซก นิวตัน ได้เสนอกฎการเคลื่อนที่ของนิวตันในหนังสือ Principia ของเขา ซึ่งต่อมาได้กลายเป็นกฎพื้นฐานของฟิสิกส์ดั้งเดิม การคำนวณการเคลื่อนที่ของวัตถุต่างๆ โดยใช้ฟิสิกส์ดั้งเดิมนั้นประสบความสำเร็จมาก จนกระทั่งนักฟิสิกส์เริ่มศึกษาเกี่ยวกับสิ่งที่เคลื่อนที่ด้วยความเร็วสูงมาก
นักฟิสิกส์พบว่า ฟิสิกส์ดั้งเดิมไม่สามารถคำนวณสิ่งที่เคลื่อนที่ด้วยความเร็วสูงได้แม่นยำ เพื่อแก้ปัญหานี้ อองรี ปวงกาเร และ อัลเบิร์ต ไอน์สไตน์ได้เสนอทฤษฎีอธิบายการเคลื่อนที่ของวัตถุ เพื่อใช้แทนของกฎของนิวตัน กฎการเคลื่อนที่ของนิวตันกำหนดให้อวกาศและเวลาเป็นสิ่งสัมบูรณ์ แต่ทฤษฎีไอน์สไตน์กับปวงกาเร ซึ่งเรียกว่า ทฤษฎีสัมพัทธภาพพิเศษ กำหนดให้ค่าเหล่านี้เป็นสิ่งสัมพัทธ์ ซึ่งต่อมา ทฤษฎีสัมพัทธภาพพิเศษก็เป็นที่ยอมรับในการอธิบายการเคลื่อนที่ เพราะทำนายผลลัพธ์ได้แม่นยำกว่า อย่างไรก็ตาม ในทางปฏิบัติ กฎการเคลื่อนที่ของนิวตันยังเป็นที่ใช้กันอยู่ โดยเฉพาะงานด้านฟิสิกส์ประยุกต์และงานวิศวกรรม เพราะสามารถคำนวณได้ง่ายกว่าทฤษฎีสัมพัทธภาพพิเศษ

ตอบ ข้อ 3.

ที่มา http://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88


ตอบ ข้อที่ 2
เพราะ ความเร็ว  คือ  การกระจัดที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา ใช้สัญลักษณ์ตัว V  เป็นปริมาณเวกเตอร์  เพราะเราหาได้จากปริมาณ
เวกเตอร์ เพราะฉะนั้นความเร็วต้องเป็นปริมาณเวกเตอร์ด้วย  มีหน่วยเป็น เมตร/วินาที ( m / s )
จากสูตร     ΔV  =   ΔS / Δt  )
V  = S  / t     =  การกระจัด / เวลา
 กำหนดให้    V  คือ  ความเร็ว  หน่วย เมตร/วินาที ( m/s )
S  คือ  การกระจัด  หน่วย  เมตร  ( m )
 t  คือ   เวลา  หน่วย วินาที  ( s )
  หน่วย   เมตร/วินาที  ( m / s  

ที่มา www.thaigoodview.com/node/27666


ตอบ ข้อที่ 4
กาลิเลโอ ได้ทำการทดลองให้เห็นว่า วัตถุที่ตกลงสู่พื้นโลกอย่างอิสระ จะเคลื่อนที่ภายใต้แรงดึงดูดของโลก ต่อมานิวตันสังเกตุเห็นว่า ทำไมดวงจันทร์ไม่ลอยหลุดออกไปจากโลก ทำไมผลแอปเปิ้ลจึงตกลงสู่พื้นดิน นิวตันได้ทำการศึกษาค้นคว้าต่อ จนในที่สุดก็สามารถพิสูจน์ในเรื่องกฎแห่งการดึงดูดของ สสาร โดยโลกและดวงจันทร์ต่างมีแรงดึงดูดซึ่งกันและ กัน แต่เนื่องจากดวงจันทร์โคจรรอบโลก จึงมีแรงหนีสู่ศูนย์กลางซึ่งต่อต้านแรงดึงดูดไว้ ทำให้ดวงจันทร์ลอยโคจรรอบโลกได้ แต่ผลแอปเปิ้ลกับโลกก็มีแรงดึงดูดระหว่างกัน ผลแอปเปิ้ลเมื่อหลุดจากขั้วจึงเคลื่อนที่อิสระตามแรงดึงดูดนั้น

การตกอย่างอิสระนี้ วัตถุจะเคลื่อนตัวด้วยความเร่ง ซึ่งเรียกว่า Gravitational acceleration หรือ g ซึ่งมีค่าประมาณ 9.8 m/s
ที่มา http://web.ku.ac.th/schoolnet/snet3/kung/vertic_move/vertic_m.htm


ตอบ ข้อที่ 3
การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย   
       คือการที่วัตถุเคลื่อนที่กลับไปมาซ้ำรอยเดิม มักจะใช้สัญญลักษณ์ว่า SHM. ตัวอย่างของการเคลื่อนที่แบบนี้ได้แก่ การเคลื่อนที่ของวัตถุที่ถูกผูกติดไว้กับสปริงในแนวราบ แล้ววัตถุเคลื่อนที่ไปมาตามแรงที่สปริงกระทำต่อวัตถุ ซึ่งเขาจะศึกษาการเคลื่อนที่นี้จากรูปที่ 1



ในรูปที่ 1a ตำแหน่ง x = 0 เป็นตำแหน่งสมดุลของปริง หรือ เป็นตำแหน่งที่สปริงมีความยาวตามปกติ ณ ตำแหน่งนี้สปริงจะไม่ส่งแรงมากระทำต่อวัตถุ ในรูปที่ 1a นี้มีวัตถุมวล m ผูกติดกับสปริง วางอยู่บนพื้นที่ซึ่งไม่มีแรงเสียดทาน ที่ตำแหน่งซึ่งปริงยืดออกจากความยาวปกติเป็นระยะทาง A สปริงจะออกแรงดึงวัตถุมวล m กลับมาอยู่ในตำแหน่งสมดุล x = 0 เรียกแรงที่สปริงกระทำต่อวัตถุนี้ว่าแรงดึงกลับ (Restoring force) ถ้า F เป็นแรงดึงกลับนี้จะได้ว่า
F = -kx -----(1)
แรงดึงกลับมีเครื่องหมายลบ เพราะทิศทางของเวกเตอร์ของแรงกับเวกเตอร์ของการขจัด x มักจะตรงข้ามกันเสมอ ค่า k คือค่านิจของสปริง (spring constant) ในรูปที่ 1 นี้ได้กำหนดให้ทิศทางขวาเป็นบวก ดังนั้นในรูป 1a ตำแหน่ง x = A จึงเป็นบวก ในขณะที่ทิศทางของแรงดึงกลับเป็นลบ และเนื่องจากวัตถุเริ่มเคลื่อนที่ที่ x = A ความเร็วของวัตถุจึงเป็นศูนย์
เมื่อปล่อยให้วัตถุเคลื่อนที่ตามแรงของสปริง วัตถุจะเคลื่อนที่มาทางซ้าย และในรูปที่ 1b วัตถุผ่านตำแหน่ง x = 0 หรือตำแหน่งสมดุลซึ่งตำแหน่งนี้ แรงที่สปริงกระทำต่อวัตถุจะเป็นศูนย์ แต่อัตราเร็วของวัตถุจะมากที่สุด โดยทิศของความเร็วจะเป็นจากขวาไปซ้าย หรือความเร็วเป็นลบ เนื่องจากพื้นไม่มีแรงเสียดทาน และสปริงก็ไม่ออกแรงมากกระทำต่อวัตถุ ดังนั้นที่ตำแหน่ง x = 0 นี้ วัตถุจึงสามารถรักษาสภาพการเคลื่อนที่ตามกฎข้อที่ 1 ของนิวตันไว้ได้ วัตถุจึงยังคงสามารถเคลื่อนที่ต่อไปทางซ้ายได้
ในขณะที่วัตถุเคลื่อนที่ไปทางซ้ายนั้น วัตถุก็จะผลักให้สปริงหดสั้นไปจากความยาวเดิมด้วย ดังนั้นสปริงจะพยายามออกแรงดึงกลับไปกระทำต่อวัตถุ เพื่อให้ตัวเองกลับไปสู่ความยาวปกติอีก จนในรูปที่ 1 C แสดงถึงขณะที่วัตถุเคลื่อนที่ไปทางซ้ายมากที่สุด ความเร็วของวัตถุจะเป็นศูนย์ทิศของแรงดึงกลับจากซ้ายไปขวา หรือเป็นบวก เวกเตอร์ของการขจัดของวัตถุมีทิศจากขวาไปซ้าย และมีขนาดเป็น A ดังนั้นตำแหน่งของวัตถุขณะนี้จึงเป็น x = -A มีข้อน่าสังเกตว่า ขนาดของการขจัดมากที่สุดของวัตถุไม่ว่าจะเป็นทางซ้ายหรือขวาจะเท่ากัน คือเป็น a เนื่องจากในรูป 1c นี้มีแรงมากระทำต่อวัตถุเพียงแรงเดียว คือแรงจากสปริง ซึ่งมีทิศไปทางขวา วัตถุจึงเคลื่อนที่กลับไปทางขวาด้วยอิทธิพลของแรงนี้
ที่มา http://web.ku.ac.th/schoolnet/snet3/supinya/harmonic-mot/harmonic.htm


ตอบ ข้อที่ 2
ในการทดลองคาบการแกว่งของลูกตุ้มอย่างง่าย Simple Pendulum
จากกฎข้อที่ 2 ของนิวตัน(เชิงมุม) จะได้ (mL^2)*a = -mgLsin(q), a เป็นความเร่งเชิงมุม อนุพันธ์อันดับสองของมุม q
สำหรับกรณีมุม theta เล็กๆ จะได้ว่า คาบการสั่น T = 2pi sqrt(L/g)
แม้ว่าการทดลองนี้ จะเป็นการทดลองที่หาความเร่งโน้มถ่วงได้ไม่แม่นยำนัก
แต่อยากทราบว่า วิธีการใดจะเป็นวิธีวัด/ทำการทดลองที่ดีที่สุดอะครับ
1) วัดคาบของการแกว่ง 20T (เป็นตัวเลขอื่นก็ได้ครับ, แต่มากกว่านี้ก็เริ่มเบื่อ) ที่ความยาว L ต่างๆ และหาค่า g ของแต่ละชุดข้อมูล ก่อนจะนำมาเฉลี่ย
2) ทำเช่นเดียวกับ ข้อ 1 แต่หาค่า g โดยอาศัยความชันของกราฟ T^2 กับ L (จากการวาดกราฟ/regressionด้วยcom/เครื่องคิดเลข)
3) วัดคาบการแกว่ง 20T ของการแกว่งที่ความยาว L เท่าเดิม หลายๆครั้ง แล้วนำมาเฉลี่ย หาค่า g
4) วัดคาบการแกว่ง 200T ของการแกว่งที่ความยาว L ค่าเดียวแล้วนำมาหาค่า g
5) วัดคาบการแกว่ง 20T ที่ความยาว L เท่าเดิม คล้ายข้อ 3) แต่ปล่อยให้ลูกต้มแกว่งไปเรื่อย (คล้ายกับในข้อ4)
นั่นคือ บันทึกเวลาที่ 20T, 40T, 60T, ..., 200T แล้วนำแต่ละช่วงมาลบกัน เฉลี่ยหาคาบ T แล้วหาค่า g

วิธีไหนดีที่สุดอะครับ ช่วยอธิบายเหตุผลสั้นๆ (ไม่ต้องยาวมาก) เป็นสมการหรือเป็น%ความคลาดเคลื่อนด้วยก็ได้ครับ
ขอขอบคุณล่วงหน้าครับ
ต่อท้าย #1 13 ก.พ. 2553, 19:14:26
ที่สงสัยเพราะว่า ประเทศญี่ปุ่น นิยมทำแบบที่ 5 ครับ
ต่อจากที่คุณ Lugia ตอบมาครับ
เมื่อเวลาผ่านไปลูกต้มอาจแกว่งเร็วขึ้นเล็กน้อยครับ เพราะมีมุมมีขนาดเล็กลงเนื่องด้วยแรงเสียดทานที่่จุดหมุน



ตอบ ข้อที่ 4

เครื่องเคาะสัญญาณเวลาจะเคาะด้วยความถี่ 50 ครั้งต่อวินาที หมายความว่า ใน 1 วินาที
เครื่องเคาะ จะเคาะ 50 ครั้ง นั่นคือ เวลาที่ใ
น 1 ช่วงจุดจะใช้เวลา 1/50 วินาที
การหาอัตราเร็ว ความเร่ง จากเครื่องเคาะสัญญาณเวลา
1. การหาอัตราเร็วจากเครื่องเคาะสัญญาณเวลา
1.1. การหาอัตราเร็วที่จุด A กระทำได้ดังนี้
… 1.1.1. หาระยะทาง s โดยวัดจาก A ไปทางซ้าย 1 ช่วงจุด ไปทางขวา 1 ช่วงจุด
( แต่ถ้าระยะทางสั้นเกินไป ใช้วัดไปทางซ้าย 2 ช่วงจุดไปทางขวา 2 ช่วงจุด )

1.1.3 หาอัตราเร็วใช้สูตร
ตำแหน่ง อัตราเร็วต้องอยู่กึ่งกลางของช่วงที่หาอัตราเร็วข้อสังเกต ถ้า s หน่วยเป็น cm , อัตราเร็ว v หน่วยเป็น cm/s
1.2. การหาอัตราเร็วเฉลี่ยจากเครื่องเคาะสัญญาณเวลา
เช่น หาอัตราเร็วเฉลี่ยระหว่าง XY ต้อง วัดระยะระหว่าง XY และใช้เวลาระหว่าง XY
แทนค่าในสูตร

แทนค่าในสูตร

ที่มา phchitchai.wordpress.com/2010/07/29/การทดลอง-2-1-การวัดอัตราเร/




ตอบ ข้อที่ 3

การเคลื่อนที่แบบโพรเจกไทล์

  • โพรเจกไทล์(projectile) คือวัตถุที่เคลื่อนที่แบบเสรีโดยมีความเร็วในแนวราบ
  • การเคลื่อนที่แบบโพรเจกไทล์(projectile motion)เป็นการเคลื่อนที่ของวัตถุ โดยมีแนวการเคลื่อนที่เป็นแนวโค้ง


ตัวอย่าง : การเคลื่อนที่ของลูกธนู กระสุนปืนใหญ่ การเคลื่อนที่ของลูกเทนนิส การเคลื่อนที่ของลูกบอลที่ถูกเตะโด่ง
ลักษณะทั่วไปของการเคลื่อนที่แบบโพรเจกไทล์
  1. แนวการเคลื่อนที่เป็นวิถีโค้งพาราโบลา
  2. การกระจัด มี แนว เกิดขึ้นในเวลาเดียวกัน และเป็นอิสระต่อกัน ได้แก่ การกระจัดในแนวราบ ()  และการกระจัดในแนวดิ่ง()
    ความสัมพันธ์ระหว่างการกระจัดในแนวราบและการกระจัดในแนวดิ่ง เป็นดังนี้
                การกระจัดในแนวดิ่งกำลังสอง แปรผันตรง กับการกระจัดในแนวราบ                                          
            2.1 การกระจัดในแนวราบ เกิดจากการเคลื่อนที่ภายใต้ความเร็วคงที่ ดังนั้นเมื่อคิดในช่วงเวลาที่เท่าๆกัน จะมีการกระจัดเท่ากันเสมอ
            2.2 
การกระจัดในแนวดิ่ง เกิดจากการเคลื่อนที่ภายใต้ความเร่งคงที่ ดังนั้นเมื่อคิดในช่วงเวลาที่เท่าๆกัน จะมีการกระจัดเปลี่ยนไปเสมอ
ที่มา www.chanpradit.ac.th/~vara/NTA/penpitcha/index.html



ตอบ ข้อที่ 1

ความหมายของอัตราเร่งหรือความเร่ง คือ อัตราเร็วหรือ ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลาที่วัตถุมีการเคลื่อนที่
               การคำนวณหาค่าอัตราเร่ง ทำได้โดยหาอัตราเร็วที่เปลี่ยนไปโดยใช้อัตราเร็วสุดท้ายของการเคลื่อนที่ลบด้วยอัตราเร็วเริ่มต้นของการเคลื่อนที่ หารด้วยเวลาที่ใช้เปลี่ยนค่าอัตราเร็วนั้น เช่น
               กำหนดให้        เป็นอัตราเร็วเริ่มต้นของการเคลื่อนที่
                                       เป็นอัตราเร็วสุดท้ายของการเคลื่อนที่
                                      เป็นเวลาขณะที่เริ่มต้นการเคลื่อนที่
                                      เป็นเวลาในช่วงสุดท้ายของการเคลื่อนที
                                       เป็นค่าอัตราเร่งของการเคลื่อนที่
                สมการแสดงความสัมพันธ์ คือ
                         หรือ                                  ถ้า  คือ ช่วงเวลาที่มีการเปลี่ยนค่าอัตราเร็ว   (สมการที่ 2)
               สำหรับสูตรในการคำนวณหาค่าความเร่ง  ใช้สูตรเดียวกัน เพียงแต่ค่าความเร็วที่เปลี่ยนไปเป็นปริมาณสเกลลาร์


ตอบ ข้อที่ 3

อัตราเร็วเฉลี่ย

อัตราเร็วในรูป สมบัติเชิงกายภาพ มักแทนอัตราเร็วที่ขณะใดขณะหนึ่ง ในชีวิตจริงเรามันใช้ อัตราเร็วเฉลี่ย (ใช้สัญลักษณ์ \tilde{v}) ซึ่งก็คือ อัตรา ของ ระยะทาง รวม (หรือ ความยาว) ต่อช่วง เวลา
ยกตัวอย่างเช่น ถ้าคุณเคลื่อนที่ได้ 60 ไมล์ในเวลา 2 ชั่วโมง อัตราเร็ว เฉลี่ย ของคุณในช่วงเวลานั้นคือ 60/2 = 30 ไมล์ต่อชั่วโมง แต่อัตราเร็วที่ขณะใดขณหนึ่งย่อมเปลี่ยนแปลงต่างกันไป
ในรูปสัญลักษณ์ทางคณิตศาสตร์

\tilde{v} = \frac{\Delta l}{\Delta t}.
อัตราเร็วที่ขณะใดขณะหนึ่งซึ่งนิยามเป็นฟังก์ชันของ เวลา ในช่วงเวลา [t0,t1] จะให้อัตราเร็วเฉลี่ยในรูป
\tilde{v} = \frac{\int_{t_0}^{t_1} v (t) \, dt}{\Delta t}
ในขณะที่อัตราเร็วที่ขณะใดขณะหนึ่งซึ่งนิยามเป็นฟังก์ชันของ ระยะทาง (หรือ ความยาว) ในช่วงความยาว [l0,l1] จะให้อัตราเร็วเฉลี่ยในรูป
\tilde{v} = \frac{\Delta l}{\int_{l_0}^{l_1} \frac{1}{v (l) } \, dl}
บ่อยครั้งที่มีคนคาดโดยสัญชาตญาณ แต่ผิด ว่าการเคลื่อนที่ครึ่งแรกของระยะทางด้วยอัตราเร็ว va และระยะทางครึ่งที่สองด้วยอัตราเร็ว vb จะให้อัตราเร็วเฉลี่ยรวมเป็น \tilde{v} = \frac{v_a + v_b}{2} ค่าที่ถูกต้องต้องเป็น \tilde{v} = \frac{2}{\frac{1}{v_a} + \frac{1}{v_b}}
(ระลึกไว้ว่า อย่างแรกเป็น ค่าเฉลี่ยเลขคณิต ในขณะที่อย่างที่สองเป็น ค่าเฉลี่ยฮาร์มอนิก)
อัตราเร็วเฉลี่ยสามารถหาได้จาก distribution function ของอัตราเร็วได้เช่นกัน (ทั้งในรูประยะทางหรือเวลาก็ตาม)
v \sim D_t\; \Rightarrow \; \tilde{v} = \int v D_t (v) \, dv
v \sim D_l\; \Rightarrow \; \tilde{v} = \frac{1}{\int \frac{D_l (v) }{v} \, dv}
ตอบ ข้อ 3.  2.0 m/s

ที่มา http://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%B2%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%A7

ที่มา


ตอบ ข้อที่ 4

ประจุไฟฟ้า มี 2 ชนิด คือ ประจุไฟฟ้าบวก แทนด้วยเครื่องหมาย +  และประจุไฟฟ้าลบ  แทนด้วยเครื่องหมาย  -
ประจุบวกที่มีขนาดเล็กที่สุดคือ โปรตอน มีประจุ +1.6 x 10-19 C มีมวล 1.67 x 10-27 kg
ประจุลบที่มีขนาดเล็กที่สุดคือ อิเลคตรอน มีประจุ -1.6 x 10-19 C มีมวล 9.1 x 10-31 kg
โปรตอนมีประจุไฟฟ้าเท่ากับอิเลคตรอนแต่เป็นชนิดตรงกันข้าม และมีมวลมากว่าอิเลคตรอน ประมาณ 1800 เท่า
โดยในสภาวะปกติอะตอมจะเป็นกลางทางไฟฟ้า  คือมีจำนวนประจุไฟฟ้าบวกเท่ากับจำนวนประจุไฟฟ้าลบ

วัตถุโดยทั่วไป แบ่งได้ 2 ชนิด คือ
        ตัวนำ  หมายถึงวัตถุที่สามารถนำไฟฟ้าได้ ยินยอมให้ประจุไฟฟ้าเคลื่อนที่ผ่านวัตถุนี้ได้
        ฉนวน หมายถึงวัตถุที่ไม่ยินยอมให้ประจุไฟฟ้าเคลื่อนที่ผ่านได้ ถ้าเราให้ประจุแก่ฉนวนประจุนั้นจะอยู่นิ่งกับที่ไม่เคลื่อนที่ไปไหน

ที่มา http://www.pt.ac.th/ptweb/prajead/electric/ststics/conductor/force.htm

4 ความคิดเห็น: